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Measurement of Trap Length for an Optical Trap

Susan Y. Wrbanek
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Abstract

The trap length along the beam axis for an optical trap formed with an upright, oil-immersion
microscope was measured. The goals for this effort were twofold. It was deemed useful to understand the
depth to which an optical trap can reach for purposes of developing a tool to assist in the fabrication of
miniature devices. Additionally, it was desired to know whether the measured trap length favored one or
the other of two competing theories to model an optical trap. The approach was to trap a microsphere of
known size and mass and raise it from its initial trap position. The microsphere was then dropped by
blocking the laser beam for a pre-determined amount of time. Dropping the microsphere in a free-fall
mode from various heights relative to the coverslip provides an estimate of how the trapping length
changes with depth in water in a sample chamber on a microscope slide. While it was not possible to
measure the trap length with sufficient precision to support any particular theory of optical trap formation,
it was possible to find regions where the presence of physical boundaries influenced optical traps, and
determine that the trap length, for the apparatus studied, is between 6 and 7 gm. These results allow more
precise control using optical micromanipulation to assemble miniature devices by providing information
about the distance over which an optical trap is effective.

Introduction

NASA has a need to use novel new micro and nanoscale materials to fabricate miniature flight
sensors in order to unobtrusively measure conditions inside engines for its fundamental aeronautics
program (Refs. 1 to 4). Newly developed nanotube clusters were identified as material that can be used to
assemble such an unobtrusive sensor (Refs. 5 to 8). Optical trapping and optical micromanipulation
techniques are being investigated to assess their usefulness as an assembly tool for miniature flight
sensors.

Optical micromanipulation presents a clear advantage over other micromanipulation techniques such
as atomic force microscopy (AFM) or “self assembly” in the case where material can be “grown” in the
desired location. An optical trap can lift and manipulate material of interest without dragging it across a
substrate as must happen with AFM. Also, because there is no mechanical contact between the optical
trap and objects under manipulation, mechanical damage to the microscopic material will not occur
(Ref. 9). Additionally, it will likely be necessary to position microscopic material in locations where
material cannot be grown onto another surface. For these reasons, optical micromanipulation is under
development as a tool to manipulate and position microscopic material to make the advanced, unobtrusive
flight sensors of the future. Also, optical trapping and micromanipulation can aid in sample handling in
remote, humanly inaccessible locations in support for the Vision for Space Exploration.

While several reports exist concerning the measurement of the strength of an optical trap, (Refs. 10 to
14) no information has been found by this author concerning the longitudinal (direction of beam
propagation) distance that an optical trap is effective. In 1985 Arthur Ashkin reported the first single-
beam gradient force optical trap with which he was able to trap dielectric particles. He reported the
existence of a “backward force,” (Ref. 11) that drew polystyrene microspheres upward toward the focus
of a downward-propagating, tightly-focused laser beam. Previous to that experiment, Ashkin had reported
optical trapping in terms of the results of two forces, the gradient force (Fgrad) which pushes dielectric
material along the intensity gradient of the beam toward the center, and the scattering force (Fscatt) which
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pushes the particles in the direction of beam propagation. In experiments previous to his 1985 work,
Ashkin had only observed particles moving toward the center of the beam, and along the direction of
propagation, unless the net force in the direction of propagation was balanced by an equal force
oppositely directed (Ref. 15).

In order to use optical trapping for placement of dielectric particles in relation to a substrate or other
material of interest, understanding the distance over which an optical trap is effective in the direction of
propagation of the beam is essential. This knowledge is particularly helpful in the case where microscopic
particles must be lifted up, carried over to and deposited onto a substrate. Additionally, it is useful to
know if the effective trapping length of an optical trap remains the same everywhere inside the sample
chamber, or if the trap length is location dependent. Knowledge of the distance over which an optical trap
is effective for a particular optical tweezers apparatus will aid in determining procedures for assembling
miniature sensor devices.

Experiment

The effective trapping length of the optical tweezers beam can be calculated using a time-of-flight
technique. If a falling microsphere is falling at its terminal velocity, the weight of the microsphere is
balanced by the buoyant force and the drag force supplied by the water, thus the velocity is constant. For
a falling minute particle in a sufficiently viscous medium, the terminal velocity can be reached in a
distance that is short compared to the radius of the particle (Ref. 16). Then, by measuring the time a
sphere is allowed to fall from a fixed optical trap, and noting whether or not the particle can be retrapped,
one can compute the effective trap length. The maximum distance from the trap center that a microsphere
can be retrapped can be determined by dropping the microsphere and allowing it to fall for successively
longer time intervals.

In order to proceed with determining the effective length of the optical trap (d), the terminal velocity
(VT) and time of fall of the microsphere (t) needed to be determined.

d = VT × t
	

(1)

The optical tweezers beam was prepared for these measurements by slightly overfilling a NA
(numerical aperture) = 1.25, 100x oil immersion microscope objective lens with a collimated 25 mW
beam from a 532 nm Neodymium- Vandadate (Nd:YVO 4) Gaussian laser. The direction of beam
propagation at the optical trap was downward. The microscope’s focus was adjusted by adjusting the
height of the sample stage, while the objective lens remained fixed. The microscope was equipped with
indicators on the fine focus knob that allowed the change in height of the objective lens to be measured in
micrometers. The indicators on the focus knob of the microscope compared very well to other laboratory
measuring devices for over 1 cm of travel, and deemed to be reliable and repeatable. This was particularly
true when all motion was in one direction, thus avoiding potential backlash in the knob adjustment. The
sample particles were prepared by sealing 9.975±0.061 μ m diameter polystyrene (PST) microspheres in
water between a glass microscope slide and coverslip. The 9.975 μ m diameter microspheres were chosen
because they were the only microspheres available at that time that did not contain any noticeable
electrostatic charge. A schematic of the experimental setup is shown in Figure 1. An enlarged diagram of
the sample chamber is shown in Figure 2.
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Figure 1.—Illustration showing the relationship to the optical trapping beam and
the water chamber containing the sample. The diagram is not to scale.
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Figure 2.—Schematic showing the sample chamber cross section. The water
layer between the glass slide and coverslip contains PST microspheres that
were raised in an optical trap and subsequently dropped to determine water
layer height, the spheres’ terminal velocity, and the trapping length. The
sample chamber is illuminated by an incandescent light for locating the PST
microspheres with microscope. The diagram is not to scale.
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Water Chamber Height Measurements

In order to know the height of the coverslip and the distance through which the sphere may fall it was
necessary to know the height of the sample layer on the microscope slide.

The depth of the sample chamber was measured in two ways. In the first method, the microscope
slide and coverslip thicknesses were measured separately with a micrometer. Then the completely
assembled slide was measured, and the thicknesses of the slide and coverslip subtracted from the total.
Using these micrometer measurements, the height of the water layer was determined to be 122.8±3.4 μ m.

In the second method, ink marks were placed on the bottom of the coverslip and the top of the
microscope slide before the package was assembled. Then the focus positions of the two marks were
noted using a 40x and 10x objectives with a laboratory microscope. This method yielded results that were
nearly in agreement with the micrometer measurements when shorter focal length objectives such as the
40x objective on the microscope were used. The water chamber depth obtained by this method ranged
from 131.1±3.3 to 139.7±3.9 μ m. Repeating the microscope measurements with the 10x objective
resulted in some good agreement about the depth of the sample chamber however, not always. The depths
recorded using the 10x objective ranged from 119.1±8.5 to 143.2±5.9 μ m. The uncertainty is much larger
for the 10x objective as the depth of focus is greater than that for a higher power objective, resulting in
greater uncertainty of the focus position.

There appears to be greater variance measuring the chamber thickness using the microscope with any
objective than with the micrometer, because it is necessary for the observer to move one’s head to read
the height, and then return to looking through the microscope to focus on the next ink mark. It is unlikely
that one’s eyes are repositioned the same distance from the microscope eyepiece, thus there is greater
scatter in the measurements made with this method. Other magnifications, such as the use of a 60x
objective were not available on the microscope that was used. Measuring the thickness using a 100x
objective was tried, but it could not be positioned sufficiently close to the top of the slide to focus on that
ink mark due to the presence of the coverslip. Placing a camera on the microscope could eliminate the
difficulty of trying to replace one’s head with respect to the eyepiece after each change is made, but such
a camera was not available at the time the measurements were made.

A third method of determining water chamber depth that was attempted was to use a time-of-flight
method. It was also planned to optically trap a 9.975 diameter polystyrene microsphere against the
underside of the coverslip, note the microscope stage height and then allow the microsphere to fall the
bottom of the sample chamber. By moving the stage to keep the microsphere in focus, and noting the
height change of the stage and the time the microsphere took to fall, it was hoped to determine the height
of the water layer. However, it was not possible to distinguish when the microsphere had actually settled
on the microscope slide, resulting in unreasonable fall times. This method was rejected in determining the
water layer height.

Terminal Velocity Measurements

In order to determine the velocity with which a microsphere fell from a trapped position and was
retrapped, several experiments were performed. First, a microsphere was optically trapped and raised in
the sample chamber until it just touched the coverslip. The trap was then lowered a short distance from
the coverslip. The trapping beam was blocked and the microsphere was then allowed to fall for a pre-
determined period of time. The initial trap position caused the microsphere to appear slightly out of focus,
apparently above the focus of the objective lens. When the microsphere fell through a position where the
sphere was in focus, the timer was started and the fine focus was adjusted in order to follow the sphere as
it fell. At the end of a specified time, the trapping beam was restored which caught the microsphere.
Simultaneously the timer was halted, and the height of the microscope stage was again noted. Thus, the
time and distance from the upper position when the sphere appeared in focus to the lower trapping point
could be noted. Polystyrene microspheres were allowed to fall for periods of about 5, 10, 15, 20, and
30 sec. From this information an average velocity from the upper focus to the lower focus could be
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obtained. The average velocity of the particle was found to be nearly constant regardless of the time
interval for which the sphere fell. This supports the assertion that the terminal velocity for the PST
microsphere was apparently reached very soon after its release from the optical trap.

The velocity of the falling spheres found via this method ranged from 2.7 to 3.8 μ m/s, with an
average of about 3.3 μ m/s. It was found, that in general, the longer the microscope illumination light
remained on, the faster the microspheres appeared to fall. A discussion of the effects of temperature of the
fluid on the terminal velocity of a falling microsphere will be discussed later. There was no appreciable
difference in the velocity determined from short or long time intervals.

Calculation of Terminal Velocity

According to Stokes Law, as a small spherical body with a small velocity moves through a fluid, the
sphere is subjected to a force F$ such that, for a sphere of radius r, and velocity v:

F$ = - 6 πηrv 	 (2)

where η is the viscosity of the fluid, r is the radius of the sphere and v is the velocity of the sphere. The
sum of the vertical forces on the sphere can be represented as:

ΣFy = Fw – FB – F$ = ma 	(3)

where Fw is the weight of the sphere, FB is the buoyant force on the sphere. When terminal velocity is
reached, the forces balance and the acceleration is zero. The terminal velocity VT can then be calculated as:

VT = (Fw – FB)/-6πη r
	

(4)

Calculating the terminal velocity for a falling 4.9875 μ m radius PST microsphere, assuming the water
remains at room temperature, results in a terminal velocity of 2.7 μ m/s. The measured velocities in the
previous section are in good agreement with this prediction.

However, it was noted that the slide and its contents are warmed by both the light source that
illuminates the sample on the microscope as well as the trapping laser beam. An ANSI type E
thermocouple was positioned on the opposite side of the sample microscope slide from the incident
trapping laser beam (the same side as the incident scene illumination light, provided by an incandescent
lamp). The temperatures there ranged from about 20 to 34 ° C over the course of an hour’s time
manipulating PST microspheres. This has the effect of changing the water viscosity to give a calculated
terminal velocity between 2.8 and 4.1 μ m/s, as shown in Figure 3. Therefore the measured velocity range
of 2.7 to 3.8 μ m/s is in very good agreement with the predicted terminal velocity when the temperature of
the water is taken into account.

The sample illumination light on the microscope was found to contribute more to the temperature of
the water in the sample chamber than the laser did. This was probably because the laser was only on for a
few seconds at a time, and then blocked. However the sample illumination light remained on for most of
the day, contributing significantly to the warming of the sample chamber, and thus resulting in faster
velocities late in each day’s data collection. Future measurements may benefit from measuring the
temperature at both the top and bottom exterior surfaces of the sample chamber, in order to better estimate
the temperature of the water inside.

The trap length can then be determined by keeping the optical trap in a fixed position and dropping
the microsphere with increasing time intervals. The maximum distance that the microsphere can travel
and still be retrapped should be the trap length. Since there was little variation in the average velocities
obtained previously, using a correct determination of the terminal velocity should provide a value from
which the trapping length can be calculated. The uniformity in average velocities when the microsphere is
dropped for successively longer time intervals indicates that the correct trap length determination is
dependent on using the correct terminal velocity for the temperature of the sample and the measured time
the microsphere fell before the trap was restored.
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Figure 3.—Plot of calculated terminal velocity versus water temperature for
a falling 9.975 µm diameter PST sphere in water, using Stokes equation.

Trapping Length Measurements

The distance along the z-axis, below the focus of the beam from which a particle can be trapped was
also measured. This was done by trapping a particle and releasing it from several predetermined distances
from the coverslip. The location of the coverslip was noted by trapping a 9.975 gm diameter polystyrene
microsphere and raising the sphere in optical trap until the sphere just started to roll away along the
coverslip. The microsphere in the optical trap was then quickly lowered a predetermined distance from
the coverslip. A shutter was closed to block the beam allowing the microsphere to fall and at the same
time a stopwatch was started. The stopwatch was stopped and the shutter opened as close to a
predetermined time interval later as reaction time allowed. Noting whether the falling microsphere was
drawn back up into the trap or not for successively longer falling times allowed computation of the
distance through which the sphere fell, assuming it fell at a constant terminal velocity. This procedure was
repeated for various starting distances from the coverslip.

The previous set of measurements demonstrated that each sphere reached its terminal velocity very
quickly after being released, therefore multiplying the terminal velocity for a 9.975 gm diameter
polystyrene microsphere by the average time interval measured yields a determination of the trapping
length along the z-axis of the beam. As previously shown, it was necessary to monitor the temperature of
the slide because prolonged exposure of the sealed slide to the light from the illumination source as well
as the trapping beam increased the temperature locally on the slide. As noted above most of the heat was
due to the illumination source.

From these measurements, the trapping length appeared to be affected by the distance of the sphere
from the coverslip when it was released. When released closer to the coverslip more time, and possibly a
longer distance, was available to retrap the sphere. If terminal velocity is reached almost immediately
after beginning its fall, as has been shown earlier, then the trapping distance is longer near the coverslip.
When the microsphere was lowered 4 or 5 gm from the position where it began to roll along the
coverslip, retrapping the same sphere without changing the focus position of the objective lens was
possible for 8 or 9 sec. Using terminal velocities found from Equations (2) to (4) it was found that a
microsphere can still be retrapped after falling through a distance of 6 or 7 gm to a depth of about 30 gm
from the coverslip. Closer to the coverslip, the trapping length appears to lengthen to nearly 24 gm,
assuming that the sphere begins to fall when the beam is blocked.
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Figure 4.—Plot showing the trap length versus distance from coverslip for 100 percent
retrap rates. Note that there are no 100 percent retrap rates at depths below 30 μ m
until 100 μ m below the coverslip. Lines are included to guide the eye.

Figure 4 shows a plot of the trap length versus distance from the coverslip for starting distances where
a successful retrap was accomplished 100 percent of the time. Each point represents an average of 10 drop
and catch attempts. Near the middle of the sample chamber, at distances between 30 and 100 μ m, the
microsphere was not retrapped each time it was released, in that region successful retrapping was less
than 100 percent. Note that the distance measurement is not to the center of the sphere, rather that it is the
measured change of the sphere height after the sphere was brought to the coverslip.

Lock et al. (Ref. 18) state two predictions for trap length, depending on the model used to describe the
trap beam. When the trap is modeled as a tightly focused Gaussian beam a trap length of ~6.9 μ m is
predicted, based on a calculation of position for which the computed radiation trapping force is directed
upward (Ref. 18). However, when the beam is modeled as an Apertured, Focused, and Aberrated (AFA)
beam, the trapping length is reduced to about 6.38 μ m (Ref. 18). Since the terminal velocity obtained
using Stokes equation does not provide enough precision to suggest which, if either, theory is a better
predictor of trap length, it is useful to seek a modification to Stokes equation that suits the geometry of
the sample cell when predicting terminal velocity for use in determining the actual trapping length of the
optical trap.

Modifications of Stokes Equation

A modified version of Stokes equation is used by Wright et al. (Ref. 19) in 1994 describing the force
on a sphere near a single wall. The modification is considered to be applicable because a no-slip boundary
condition at the coverslip should increase the drag. This modified version of Stokes equation is described
as:

6πrvη
Fs = (5)

9 ⎛ r ⎞ 1 ⎛ r 3 45	 4 1 ⎛ r5
16 ⎝ h ⎠ 8 ⎝ h ⎠ 256(r)h 	 16 ⎝ h ⎠
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where v is the velocity of the particle, η is the viscosity of the fluid, r the radius of the particle, and h is
described by Wright et al. to be the distance of the center of the sphere from the coverslip. If the
determination of trap length using terminal velocities calculated by substituting the modified version of
Stokes equation for the ordinary form of Stokes equation, then the velocities of the falling particles are
considerably slower near the coverslip, shortening the trap lengths to be from nearly 23 μ m to about
15 μ m when the center of the microsphere is about 9 μ m below the coverslip. However, Happel and
Brenner (Ref. 20) report that the modification of Stokes equation used by Wright et al. to be valid for a
particle falling parallel to a single wall. No mention is made as to whether that modification of Stokes
equation applies to the top surface of a small enclosure. Happel and Brenner do report a different
modification of Stokes equation for a particle moving toward a floor, but offer no advice as to what
should be applied in the vicinity of ceilings.

The modification cited by Happel and Brenner for a particle moving toward a fixed wall results in
Stokes law appearing as:

F = 6πηvaλ
	

(6)

Where η represents the viscosity of the fluid, v represents the velocity of the particle, and λ represents an
infinite series described as:

⎡⎤

λ=4 sinh α
r ∞ 	 n(n + 1) ⎢ 2sinh(2 n + 1)α + (2 n + 1) sinh 2

α −1
⎥ (7)

3	 un=1 (2n −1)(2n + 3) ⎢ 4sinh2  (n + 
1

)α − (2 n + 1)2 sinh 2 α ⎥
⎣⎢ 	 2	 ⎥⎦

and α is described as α = cosh–1 (h/r), where h is the distance from the fixed wall to the center of the
sphere, and r is the radius of the sphere.

Using this modification of Stokes equation in place of the original equation yields velocities that are
slower still than those that result from the previous modification to Stokes equation. However, these
velocities yield trapping lengths that are reduced to nearly 10 μ m when the center of the microsphere is
less than 15 μ m away from the coverslip. A plot of trap length versus release distance from the coverslip
can be found in Figure 5 showing the trap length as calculated with terminal velocities found using (1)
Stokes equation (2) a modification to Stokes equation for motion parallel to a single wall; and (3) a
modification to Stokes equation for motion toward a fixed wall. When the release distance from the
coverslip is > 20 μ m, all three equations yield very close results, as is expected when the distance of the
falling sphere from container boundaries is sufficiently larger than the radius of the sphere to allow the
modified versions of Stokes equation to approach the original version.

Uncertainty in timing the falling microspheres prevented the ability to distinguish via this method
which beam model correctly predicts the trapping length for this optical tweezers system. The uncertainty
in timing led to uncertainties in the trapping length that were typically about 0.35 to nearly 1 μ m,
neglecting uncertainties in temperature and distance measurements. Attempting to also consider
temperature and distance uncertainties is not expected to improve the uncertainties in determination of the
trap length at this time. However, one of the desired purposes of this experiment has been achieved,
which is to be able to predict the distance over which this optical tweezers apparatus can draw
microscopic objects upward into the trap. For purposes of using this optical tweezers apparatus to move
and characterize microscopic material, it can now be said that the trap length is between 6 and 7 μ m at
most locations within the sample chamber.

Closer than 15 μ m to the coverslip, the time available to retrap a microsphere could be longer than
7 sec, resulting in trap lengths that appeared to be 10 to 23 μ m, depending on the version of Stokes
equation used to compute the terminal velocity. Interactions between the microsphere and the coverslip,
and the initial set-up of the flow of fluid around the sphere as it begins to move are not well enough
understood at this time, to properly account for the increased time available to retrap a microsphere near
the coverslip.
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Figure 5.—Plot of trap length versus starting depth for the center of the microsphere,
using temperature corrected terminal velocities computed using three different forms
of Stokes equation. Lines have been included to better illustrate which points belong
to each modification.

Measurement of Microsphere Retrapping Success Rate

Physical contact between the microsphere and the coverslip may produce sticking between the
surfaces, delaying the fall of the microsphere. Attempts to measure the time allowable for a sphere to be
retrapped when the microsphere was known to be in contact with the coverslip resulted in the microsphere
sticking to the coverslip for 20 sec or more until it was dislodged by tapping on the microscope slide with
a pencil. Further than 30 gm from the coverslip the microsphere could not be retrapped at all after about
2 sec until a depth of about 100 gm was reached. From a 100 to a 120 gm depth, a microsphere could be
retrapped after about 2 sec but not for a longer time. From the previous measurements of the water layer
height in the sample chamber, it is estimated that this region is between 20 and 30 gm from the bottom of
the water layer of the sample chamber.

Several trials of trapping for increasing amounts of time were run at increasing distances from the
coverslip, and the results are shown in Figures 6 and 7. The fraction of efforts for which a falling
microsphere was successfully retrapped after a pre-determined amount of time was recorded.

Figure 6 plots percentage of successful retraps for 2 and 3-sec falling intervals starting at various
distances below the coverslip. For falling intervals of 2 sec, the microspheres are easily retrapped after
release lowering them 30 gm or less below the coverslip, and for distances between 100 and 120 gm
below the coverslip. It is noted that for a 2-sec time interval successful retrapping occurred closer to the
top and bottom boundaries of the sample chamber. While retrapping was not fully successful in the
middle area of the chamber, the retrap percentage remained above 70 percent. Difficulty in retrapping a
microsphere near the middle may in part be due to the sensitivity of the falling microsphere to subtle
vibrations in the equipment that can cause the falling sphere to move horizontally away from the path of
the optical trap.

Not only did the trap length decrease with depth in the water, but also the success rate of retrapping
diminished with distance. As the drop point of the microsphere was lowered the number of tries for an
average time that successful retrapping occurred decreased. For average dropping times of 2 sec the
retrapping success rate began to decrease 40 gm below the coverslip to about 83 percent of the attempts.
A 100 percent success rate of retraps was again achieved 100 gm below the coverslip. For an average
dropping time of 3 sec the successful retrap rate declined to about 40 percent when the sphere began its
fall 20 gm below the coverslip and never improved with depth. Figure 7, charts A, B, C, and D, show the
percentage of time that a trapped microsphere was successfully retrapped for given distances the sphere
was lowered from the top before releasing.
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Figure 7.—Plots showing the successful retrap percentages versus falling time from the coverslip for a variety of
starting distances beneath the coverslip. The use of lines between data points is employed as a visual aid to help
note which data points belong to certain starting distances. The microsphere was lowered 4, 5, and 10 µm before
release (A). The microsphere was lowered 20, 30, and 40 µm before release (B). The microsphere was lowered 50,
60, and 70 µm before release (C). The microsphere was lowered 80, 110, and 120 µm before release (D).

In all cases, the success rate of retrapping decreased further from the upper and lower boundaries of
the sample chamber. This may be due in part to the sphere moving more slowly in the vicinity of the
boundaries, making retrapping more likely. It was also noted while performing the experiments that a
microsphere moving near the middle of the sample chamber was much more susceptible to having its
trajectory altered by vibrations induced when adjusting the microscope, which also reduces the success
rate of retrapping a particle.

Difficulty retrapping microspheres further from the coverslip may also be due in part to the fact that
most oil-immersion microscope objective lenses correct for spherical aberration of the trapping beam near
the coverslip, rather than deeper into a sample chamber, (Ref. 21) and also may be due to physical
boundary conditions that proximity to the coverslip presents to the microsphere. Having fewer spherical
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aberrations near the coverslip does not explain why retrapping became easier near the bottom of the
sample chamber, but the sphere has an increased proximity to physical boundaries in this region, which
may help provide stability to the motion of the sphere.

Conclusion

Timing a falling microsphere for successively longer periods of time reveals that terminal velocity is
reached very quickly after releasing a microsphere from an optical trap in the sealed sample chambers.
Thus, the terminal velocity of the falling sphere may be considered constant for purposes of computing
the distance over which an optical trap can draw in objects, except when the microsphere is less than two
sphere diameters from the top of the sample cell. The details of how the sample cell environment affects
the falling sphere are not completely understood at this time. There may be some electrostatic forces close
to the coverslip, between the coverslip and the microsphere, and it may take some time for the smooth
flow of fluid around the falling sphere to set up. These experiments were attempted with a variety of sizes
of microsphere, but only the 9.975 μ m diameter spheres available to me at that time were found to not
contain any residual static charge on the surface of the spheres. It is not possible at this time to measure
the trapping length with precision enough to determine weather the trap length favors an apertured,
focused, and aberrated (AFA) beam model or a Gaussian beam model. However, it can be stated that in
most locations within the sample chamber, this optical trap reaches “downward” to draw microspheres up
over a distance of between 6 and 7 μ m. It can also be stated that 2 sec appears to be the optimum time
needed to retrap a falling microsphere without necessitating moving the optical trap. Moving the optical
trap involves moving parts of the microscope which can introduce vibrations in the sample chamber
which can also make it difficult to reacquire the microsphere with the trap. Additionally, it appears that
when a microsphere is within two diameters from an upper or lower boundary in the sample chamber may
not move as quickly as it does near the middle of the chamber, resulting in longer times available for
retrapping the same object.

The temperature of the water inside the sample chamber had a noticeable effect on the viscosity of the
water. The sample illumination light was found to warm the sample as much as 14 °C during several
hours of data accumulation. Future measurements should benefit from tracking the temperature of the
sample chamber so as to have a reliable determination of the viscosity of the water in the chamber at the
time of data collection. Timing of a falling microsphere may be improved if a beam block and timing
device can be precisely connected to lessen uncertainty in time measurements.

It was found that the upper and lower boundaries of the sample chamber influence the time available
to retrap a falling object in such a way that it is easier to trap falling microsphere in those areas. Also it
was found that it is more difficult to trap a falling microsphere near the middle of the sample chamber.
Increased spherical aberration of the optical trap, and having fewer constraints on the motion of the fluid
as water molecules slip past the falling sphere may contribute to this difficulty. While retrapping was
more difficult near the center of the chamber, greater than 70 percent success rate was achieved.

This will help in predicting how particles can be moved into position when using optical traps as tools
for building small devices.
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